`Float`

objects represent real numbers using the native architecture's double-precision floating point representation.

- Arithmetic operations
- Performs various arithmetic operations on
*flt*. *flt*`+`

*aNumeric*Addition *flt*`-`

*aNumeric*Subtraction *flt*`*`

*aNumeric*Multiplication *flt*`/`

*aNumeric*Division *flt*`%`

*aNumeric*Modulo *flt*`**`

*aNumeric*Exponentiation - <=>
*flt*<=>*aNumeric*→ -1, 0, +1- Returns -1, 0, or +1 depending on whether
*flt*is less than, equal to, or greater than*aNumeric*. This is the basis for the tests in`Comparable`

. - ceil
*flt*.ceil →*anInteger*- Returns the smallest
`Integer`

greater than or equal to*flt*.`1.2.ceil → 2 2.0.ceil → 2 (-1.2).ceil → -1 (-2.0).ceil → -2`

- finite?
*flt*.finite? →`true`

or`false`

- Returns
`true`

if*flt*is a valid IEEE floating point number (it is not infinite, and`nan?`

is`false`

). - floor
*flt*.floor →*anInteger*- Returns the largest integer less than or equal to
*flt*.`1.2.floor → 1 2.0.floor → 2 (-1.2).floor → -2 (-2.0).floor → -2`

- infinite?
*flt*.infinite? →`nil`

, -1, +1- Returns
`nil`

, -1, or +1 depending on whether*flt*is finite, -infinity, or +infinity.`(0.0).infinite? → nil (-1.0/0.0).infinite? → -1 (+1.0/0.0).infinite? → 1`

- nan?
*flt*.nan? →`true`

or`false`

- Returns
`true`

if*flt*is an invalid IEEE floating point number.`a = -1.0 → -1.0 a.nan? → false a = Math.log(a) → NaN a.nan? → true`

- round
*flt*.round →*anInteger*- Rounds
*flt*to the nearest integer. Equivalent to:`def round return floor(self+0.5) if self > 0.0 return ceil(self-0.5) if self < 0.0 return 0.0 end`

`1.5.round → 2 (-1.5).round → -2`

- to_f
*flt*.to_f →*flt*- Returns
*flt*. - to_i
*flt*.to_i →*anInteger*- Returns
*flt*truncated to an`Integer`

. - to_s
*flt*.to_s →*aString*- Returns a string containing a representation of self. As well as a fixed or exponential form of the number, the call may return “
`NaN`

”, “`Infinity`

”, and “`-Infinity`

”.

Extracted from the book "Programming Ruby - The Pragmatic Programmer's Guide"

Copyright © 2001 by Addison Wesley Longman, Inc. This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright holder.