
Developing User Interfaces using SCXML Statecharts
Gavin Kistner
NVIDIA, Inc.
1350 Pine St.
Boulder, CO

gkistner@nvidia.com

Chris Nuernberger
NVIDIA, Inc.
1350 Pine St.
Boulder, CO

chrisn@nvidia.com

ABSTRACT
In this paper we describe NVIDIA Corporation’s
implementation of an editor and runtime for the SCXML
statechart standard. The editor and runtime are used for
both prototyping and production of user interfaces, targeted
primarily for automotive in-vehicle interfaces. We show
how state machines improve the simplicity and stability of
application development, particularly when using the
hierarchical and parallel states available in SCXML. We
investigate the usefulness of statecharts in user interaction
design. We further describe subtle additions and deviations
from the SCXML standard, the motivations for these
changes, and their benefits compared to a strictly standards-
compliant implementation.

Author Keywords
SCXML; state machine; statechart; gui

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Techniques:
State diagrams

INTRODUCTION
Since 2003 we have developed a software product for
creating 3D user interfaces. Since 2009 this tool has been
known as NVIDIA’s UI Composer Studio, or “Studio” for
short.

In Studio all user interaction is handled through triggers
known as “actions” that translate events occurring on
objects in the scene to visual changes in the interface
(Figure 1). Visual changes in Studio are most commonly
specified as “slides”, which control what aspects of the
interface are visible along with animations and transitions.
Conditional interactions—such as not responding to mouse
clicks on a button when the button is disabled—are
accomplished by placing actions only on specific slides for
items in the interface.

While actions have been effective at producing a functional
interface, they have historically caused two problems:

1. Larger interfaces became hard to edit as
interactivity was ‘hidden’ deep within specific
slides of specific interface elements.

2. Combining the interactivity with the visual
presentation made editing difficult whenever the
interactivity needed to be changed independent of
the presentation.

Visual States versus Logical States
It is often desirable in a software interface for changes in
interaction to be paired with changes in the presentation.
For example, when a text input is focused—accepting user
input—it is beneficial to the end user for the visual
appearance to reflect this and differentiate it from the case
where the input is not focused. However, the visual state
may not change along with the logical internal state.

One such example is the appearance of a modal dialog.
Modal dialogs disable interaction with other visible
content, but usually do not change the appearance of that
content. In this case a single visual state (a slide) must be
associated with multiple logical states.

A reversed example is when a transition animation is
followed by a steady-state animation. In Studio such a
situation is usually implemented using multiple slides. In
this case we have the situation where multiple visual states
are associated with a single logical state.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org or
Publications Dept., ACM, Inc., fax +1 (212) 869-0481.

Copyright 2014 held by NVIDIA. Publication Rights Licensed to ACM !

Figure 1: Scriptless Actions in UI Composer Studio

Separating Logic from Presentation
We set out to solve the problems described above by
implementing the visual states independently from the
logical interaction states. We further believed that this
separation should provide additional benefits:

1. Interaction designers would be able to develop the
logical states independently from graphical artists
working on the interface.

2. Artists would be prevented from accidentally
breaking the interaction logic during development.

3. The interaction flow of the interface would be
testable in an automated manner, independent of
the interface.

To represent the logic of the system we chose to use a state
machine.

State Machines and SCXML
Finite state machines (or simply “state machines”) have
been in use in a variety of technical fields since the 1950s.
Traditional state machines have a single set of mutually
exclusive states. The machine must be in exactly one state
at any given time. Such systems are limited in their ability
to efficiently express the interactions of a sophisticated
software system. For example, describing a system of three
independent buttons which have four possible states each—
disabled, enabled, hovered, and active—requires a state
machine with 64 states. These states represent the Cartesian
product of the possible combinations of states for the
buttons. We have been given (unsubstantiated) reports of
such systems resulting in in-vehicle user interfaces with
over 3,000 states. We would consider such a system to be
unable to be easily tested, maintained, or even understood.

Harel statecharts [1] are a visual formalism of state
machines. They provide three features that greatly simplify
the expression of a complex interface over a traditional
state machine:

• The addition of orthogonal regions (also known as
“parallel states”) permits states from multiple sets
to be active at the same time. This removes the
problem of the combinatorial explosion described
above; the machine requires far fewer states,
instead authoring a simpler system that is better
representative of the objects in the interface.

• The addition of hierarchical states allows a simple
programming-by-differences methodology [2].
Child states can specialize a parent state, handling
specific interactions as necessary or allowing the
parent state to handle shared interactions. This
reduces the number of transitions required in the
machine, and in doing so it also reduces the
chance of mistakes by reducing duplication of
logic.

• History states within hierarchical regions allow the
state machine to record the active descendant
state(s) when leaving them, and return to that
same set of states later.

SCXML is an open standard [3] that uses XML instead of
visual specifications to describe content similar to Harel
statecharts. Some of the features of SCXML that are
important to user interaction include orthogonal regions,
hierarchical states, history pseudo-states, executable
content on state entry/exit, executable content during
transitions, and a formalized data model. SCXML also
specifies a formal interpretation algorithm, with a wide test
suite now available to help ensure correctness.

While the feature sets of SCXML described above made it
appealing as a choice for storing the user interaction, we
felt that understanding the SCXML specification and
typing raw, syntactically valid XML was too cumbersome
and error-prone. Once we decided to use SCXML we
needed to write an editor to easily create valid markup, and
a runtime to support it.

SCXML VISUAL EDITOR
We created a new application named “Architect” to create
and modify SCXML files. Editing is done visually, as seen
in Figure 2. Our graphical editor provides many benefits
over a text editor. It ensures that the user produces valid
SCXML. It improves understanding [4, 5, 6] of the state
machine. It allows executive stakeholders to review and
approve interface logic without examining any ‘code’.
Finally, it shows regions that are likely to be bug-prone.

We anticipated many of these benefits. In particular, using
visual statecharts to express and discuss the user’s
navigation through application screens replaced a more
cumbersome and error-prone exchanging of pictorial flow
charts that were then translated to code with each change.
We were able to replace this workflow by adding a feature

!

Figure 2: Portion of a production statechart created with
Architect, with transition event labels hidden

that allows the user to filter the display of the statechart to
only include transitions related to a subset of triggering
events. This provides custom views appropriate for high
level conversations, yet allows the same statechart to be
analyzed under different contexts.

We did not anticipate the correlation between visually
complex regions—such as states connected by many
transitions, with the same events and different conditions—
and the likelihood of bugs in that region. For example, the
collection of states labeled GridContent in Figure 2
turned out to be the source of the most bugs in the
application it was controlling.

Visual Representation
Our visual representation of the statechart differs from
Harel’s in many ways. Most are designed to reduce visual
clutter and improve understanding at first glance.

Harel shows the default state within a hierarchy (called the
default initial state in SCXML) as a dot in the parent state
with an arrow pointing to the default state. We simplify this
to a single Unicode bullet prefixing the name of the default
state, seen in the states initial and a in Figure 3.

While Harel’s examples mostly use single-character event
names labeled on the transitions, real applications often
have multiple events with much longer names. For
example, a particular transition in the application could be
triggered by any of the events dpad.right.down,
touch.focusStore0, or bumper.right. To avoid
drawing large amounts of text on the statechart diagram we
hide the name of the event(s) that trigger a transition at the
default zoom level. The user may zoom in to see event
names exposed in the interface, or select a particular
transition to see the triggering event(s).

A single parent state in SCXML can have multiple history
states with different behavior. The circled (H) and (H)*
notations used by Harel do not allow sufficient distinction
between history states within the same parent state. We
instead display the full name of history states. We also
append a star glyph to the name to visually differentiate
them from normal states, using different glyphs depending
on whether the history is shallow or deep.

We consider Harel’s dotted separation for orthogonal
regions to be a desirable visual representation, yet difficult
to support for intuitive editing. Instead, we draw a SCXML
<parallel> wrapper with a dotted border. In Figure 3 the
states X and Y are orthogonal; both are active whenever the
state machine is in the parallel state. This convention is
convenient to edit, but has the disadvantage that it requires
the consumer of our diagrams to understand this notation.

Organizing States
To help emphasize hierarchical placement we apply subtle
shadows to states. This creates the perception of 3D
stacking; child states appear to sit on top of their parent.

Some large applications developed with Architect have
states hierarchically nested five or more levels deep. To
better help visually distinguish the boundaries we allow the
user to apply a background color to a state. The background
of each state is semi-transparent, allowing the color of any
parent state to be visible on each of its descendant states.

Adjusting the placement of child states within a parent state
is constrained by conflicting requirements. We do not wish
to allow a child state to be placed outside the boundaries of
its parent state, since this would cause the visual diagram to
no longer properly represent the internal hierarchy.
However, if we prevent a child from moving outside the
boundaries of the parent, a “claustrophobic” feel is
introduced, forcing users to fight the system. If we instead
cause moving a child against the parent boundaries to
resize the parent then we encounter additional problems,
both with transition routing and the need to push sibling
and parent states. An errant child movement could destroy
important layout of the states and transitions.

Our final solution was influenced by Alan Cooper’s
recommendation to allow users to “fudge” the system [7].
Users may temporarily creating an ‘invalid’ statechart by
placing states outside their parent, but we draw the outline
of any states with invalid placement in a bright red color to
indicate the visual error. This allows the user the freedom
to move items around at will during editing, while still
encouraging valid results. And, if the user truly wishes to
change the parent of a state, there is an alternative mode for
dragging a child state into a new parent.

Display of Transitions
We believe that understanding the flow of control between
states is most important in reading a statechart. We
correspondingly expended a large amount of design and
implementation effort on their appearance.

On each transition between states we draw a dot on the
edge of the source state and a triangular head entering the
target state. The source dot exists to make clear that a
transition comes from that state, and is not a line coming
from another state that happens to go under this state. (The
transparent background on states further prevents this
problem, as any transition line going under a state is visible
beneath it.) The dot is drawn smaller than the arrowhead
and with reduced opacity to help visually differentiate it.

!

Figure 3: Examples of states and transitions in Architect

When a transition is guarded by a condition—dynamic
code evaluated to determine whether or not to take the
transition—we draw the circle for the source dot with a
white background. An example of this is shown in the
transition from state a to b in Figure 3. This visual
differentiation helps to highlight to the casual observer that
the transition may not always occur.

We draw transitions that have executable content uniquely
to help highlight where side effects may occur in the
statechart. As shown on the transition from b to a in Figure
3 these transitions have a small curved line added adjacent
to the arrowhead. This visual style mimics a similar style
(not pictured) that indicates when a state has executable
content during entry or exit.

Certain transitions in SCXML may target the state that they
originated from. We depict this as a circular transition, seen
in Figure 3 at the bottom of the parent state. Other
transitions in SCXML may not target any state at all. These
“targetless” transitions are displayed without any line, as a
single dot on the edge of the source state.

Transitions may be hand-routed by the user. Whenever a
transition changes direction the corner is rounded. Beyond
the aesthetic appeal, this helps to ensure that two transitions
crossing each other at 90° angles cannot be mistaken for
transitions that turn.

We draw the transitions with a semi-transparent line so that
multiple collinear transitions are visually different from a
single transition. For example, in Figure 2 the multiple
transitions entering the pinkish states become darker than
any individual transition line. We believe that subtle details
like this, combined with others, results in a diagram that is
both pleasing to the eye and that also is easier to examine
and to understand.

Limitations in Graphically Representing SCXML
Our work at present does not yet allow the visual editing of
all features offered by SCXML.

Architect sets a child state to be the default initial state by
setting the initial="…" attribute on the parent state.
However, SCXML alternatively allows an <initial>
element to be created containing a transition with
executable content on it. We do not provide a way to author
such an initial transition. Users may instead create a state
with that executable content on entry, and immediately
transition from that state to the desired initial state.

We do not support the visual editing of transitions that
target more than one state. Though this is reasonable to
represent with some interim node (similar to a UML
Statechart “fork” node [8]) to date no statechart we have
created has required this capability.

Finally, while we support the distinction between internal
and external transitions in SCXML, we do not do so based
on whether the transition’s edge leaves the parent state as
with UML Statechart local versus external transitions.

Though this seems a good visual differentiation, we believe
that it is not obvious enough for editing; it is too likely that
an intended visual-only edit to transition routing could
result in a behavioral change.

CONNECTING LOGIC TO INTERFACE
Given a presentation authored in Studio and an SCXML
state machine authored in Architect, we require a way to
communicate between the two. Some changes to the logical
state must be able to trigger a change in the interface, and
some user interactions in the interface (such as tapping on a
button) must be able to fire an event in the state machine.

Driving Presentation from States
To control the interface from the state machine, we need to
be able specify interface-specific actions that may take
place during any of the executable regions of SCXML:
during the entering of states, the exiting of states, or during
the activation of a transition.

Since SCXML is XML, we might specify the interface
changes as executable content in a custom namespace.
However, our automotive customers would like to be able
to re-use a single state machine with multiple presentation
layers. For example, a high-end car may implement the
interface using UI Composer Studio, while a less expensive
model may use a simpler interface requiring cheaper
graphics hardware. To support this we must separate
presentation completely from the state machine.

To this end we designed an XML schema for a custom file
(the “Glue” in Figure 4) that maps the entering and exiting
of specific states, and the activation of transitions, to the
desired changes in the presentation. While the format of
this file is irrelevant to this discussion, its use highlights a
limitation of the SCXML standard.

Referencing a state from this separate file is simple as the
SCXML file contains a unique id attribute for each state.
Referencing transitions, however, is not possible: There is
no such unique identifier present in the standard for
transitions. To facilitate the reference, Architect adds a
custom uic:id="…" attribute in a custom namespace to
each transition. This value is editable by the user in order to
apply a semantic and memorable label, but Architect
ensures that the value entered is unique amongst all
transitions. We hope that a future version of the SCXML
specification may support unique identifiers on transitions.

Figure 4: Gluing the Presentation to the Logic

Driving States from Presentation
Communication from the UI Composer-based interface to
the state machine is performed via Studio’s “actions”.
Instead of multiple actions on each of multiple slides
tracking the onPressureDown event on a button and
causing multiple interface changes (Figure 1) the artist
instead creates a single master action that fires a semantic
event into the state machine. The button always tells the
state machine when it is pressed, and it is up to the state
machine to decide what—if anything—should occur as a
result.

By processing all user interaction in the state machine, we
enable the creation of multi-modal interfaces that can use
touch, hardware input (keyboard or buttons), focusable
interface elements, voice input, gaze tracking, camera-
based gesture recognition, and more.

Synchronizing States and Presentation
Many of the applications we have developed have
transitions in the presentation that correspond to a change
in interaction. One such example is a ‘welcome’ animation
that displays during application and vehicle start. During
this animation no user input is accepted. When the
animation completes interaction is enabled.

We could use the animation completing in the interface to
trigger the logical state change. This provides a good
experience to the end user, as the visual change is
guaranteed to correspond to the interaction change.
However, this also leaves our application at the mercy of
the interface artist. If the artist modifies the duration of the
animation to be 30 seconds, the user will not be able to
interact with the interface during that time.

If, alternatively, a development team has an Interaction
Designer (“ID”) who is in charge of user experience and
interaction flow independent of the artists, the ID may
instead choose to use SCXML-based timeouts with fixed
durations to trigger the interaction change. In this case the
presentation is at the mercy of the logical interactions,
possibly being pushed to a visual state before the artist’s
animation is complete.

We support the invocation of timeouts by using standard
SCXML features. Upon entering a state we queue an event
to <send> after a specified period, but early exit of the
state cancels the queued event. Figure 5 shows authoring
such a situation in Architect.

RUNTIME IMPLEMENTATION
Beyond editing the interface and logic, and gluing them
together, the final piece needed for application support is an
runtime for the SCXML logic. This runtime interprets the
SCXML instead of compiling the state machine to code.
This enables simpler introspection of the state machine
during runtime. It also makes it easier to make changes to
the logic without requiring any recompilation. Both of
these result in shorter development cycles.

During evaluation of SCXML as a candidate language we
first implemented prototype SCXML interpreters in the
Ruby[9] and Lua[10] scripting languages. The official
SCXML interpreter algorithm was still in flux at this time
and we found it easy to test changes to the algorithm in
these languages. In fact, the initial release of the NVIDIA®
SHIELD™ portable game console [11] used the Lua-based
interpreter for its game-browsing interface.

After we decided to use SCXML we wrote our official
engine in C++, with an SCXML scripting model that uses
Lua for all conditional transitions, data model access, and
executable <script> evaluation. The final implementation
included in our product weighs in at around 4,000 lines of
code, including the Lua script bindings but disregarding
supporting libraries and header files.

The decision to use C++ was not due to performance
issues; the Lua interpreter ran fast enough for our purposes
on embedded hardware (though the initial SCXML parsing
did delay startup slightly). The decision was based on four
criteria:

1. The code base for all of UI Composer is C++, as it
offers far superior debugging to Lua. Despite
having our own Lua debugger (UI Composer
Studio also exposes Lua in the interface layer) we
find it easier to debug C++ than Lua.

2. Customers wishing to license our state machine
may not want to use Lua at all; the scripting
system is abstracted from the state machine and
C++ is, in general, accepted by our customers in
more varied contexts than Lua.

3. C++ allows a more compact representation of the
problem and more optimization possibilities in
terms of size/speed in the long term should such
needs arise.

4. Our entire core development team is more
experienced in C++ than Lua. However, the
subset of SCXML required for our use case is a
simple enough that it takes less than one developer
to support the entire implementation, including all
Lua bindings and maintaining our test suite.

Figure 5: Firing an event after a timeout.

SCXML Specification Features Not Supported
Our SCXML implementation is not fully compliant. There
are features required by the standard that we have not found
to be useful in our product, and have not implemented.

We do not implement invocation or communication with
external services. This means that we do not support the
<invoke> element, any subset features of <send> or
<cancel> related to external services, the <content> data
container.

We do not support the <param> element for passing
annotated data along with an event. While this might be
useful in some scenarios, it has not yet been required. There
exist other mechanisms to accomplish the same goal in
many cases, for example pushing event-related information
into the data model instead of onto the event.

We do not support <donedata> for describing the
resulting state machine information when it reaches a
<final> state. Our applications using the state machine do
not generally exist as services that need to communicate
results to a separate system.

We do not support a SCXML I/O Processor (section D in
the specification). Our engine only runs a single SCXML
session at a time.

We are using this subset of SCXML in high-end production
applications to great effect. While these features are
certainly not useless, this shows that they are not necessary
for certain domains. We hope that in the future the SCXML
standard will be simplified to a core set of features—as
occurred with the SVG Tiny standard [12]—with additional
modules describing useful add-on functionality.

Unique Implementation Features
Our engine further deviates from the SCXML standard in
various ways designed to improve the reliability of our
applications.

State Machine Unit Testing
To help verify that modifications made to a complex state
machine during editing did break existing functionality we
have developed an XML-based unit testing system for our
SCXML engine. A unit test initializes a state machine with
custom data model values and then specifies a series of
events to inject into the system. Each event is followed by
assertions about the currently active states or data model
values. By stubbing out functions that make simple data
model changes we can create tests that simulate a working
application and fully test the machine in a standalone
environment.

By integrating unit testing into Architect, an ID working on
a state machine can periodically and very easily run all unit
tests against the machine. If any unit test assertions fail the
ID can investigate what recent changes may have broken
the logic, or revise the unit test to reflect a desired change
in the interaction and flow.

Dynamic Initial State
Applications deployed on the Android operating system
may be killed and restarted by the OS. When this occurs it
is the responsibility of the application to resume to match
what the user was last doing. To support this, we support a
custom uic:initialexpr="…" attribute on any state
where an initial="…" attribute is valid.

The value of the attribute is evaluated as a Lua expression,
and the result interpreted as a space-delimited set of state
identifiers to target. This code-based state change feels like
it makes the state machine less trustable, less precise.
However, it is equivalent to an initial state with transitions
leading to every possible combination of states, each
guarded by a Lua condition determining if it is to be run.
This feature does not change the functionality that is
possible by the state machine; it simply makes the
functionality possible in a more convenient manner.

We have similarly discussed adding support for a custom
targetexpr="…" attribute to dynamically determine the
state(s) targeted by a transition. As with initialexpr,
this attribute should have no impact on the functionality
possible with the machine.

Remote Debugging
Our engine permits runtime debugging and introspection.
The SCXML interpreter is able to communicate the active
state(s) and current data model values over the network to
Architect for live display during execution and debugging.
Adding debugger support required only an additional 300
lines of C++ (not including transport protocol code).

Guarded Microstep Iteration
The official SCXML interpretation algorithm has an
unbounded while loop that processes internal “microstep”
transitions. Coupling this with a poorly designed state
machine produces an infinite loop. Such a machine design
is more likely than seems probable. We have repeatedly
experienced a problem where an ID beginning work on an
interface will create a pair of transitions between two states
without taking the time to enter a triggering event for
either. Consequently, as soon as one of those states is
entered the state machine will unendingly switch between
the two states as fast as possible.

To prevent this problem, and other more complex unstable
configurations, our engine will only process a (large) fixed
number of microsteps before moving on. While this value
is currently fixed at 10,000 iterations we hope to make this
configurable per state machine, in case the ID desires either
a lower or higher limit.

Update-based Event Processing
The SCXML interpretation algorithm describes a main
event loop that runs asynchronously from other systems,
with a blocking call where it waits for events to process.
Our engine instead runs synchronously, processing a queue
of events until stable and then returning. This provides us

with a very predictable system, where we know that all
events queued during one update frame will be processed
before the next update renders to screen.

We hope to spend more time in the future researching real-
time possibilities with algorithmic upper-bound guarantees
on processing time.

Verified State Targets
All transitions that target a state are verified once before
being taken to ensure that the referenced state id exists.
Despite Architect preventing such a scenario, a user could
hand-edit a SCXML file and enter an invalid state id.
Further, this also guards against the possible case where the
dynamic initialexpr Lua code returns invalid data.

CONCLUSION
Separating our interface development from interaction logic
has simplified the development of complex applications.
On a near-daily basis our in-house artists praise how much
easier it is to control the interface from the state machine,
and how much easier it is to find and fix user interaction
bugs.

Using SCXML as the representation of the state machine is
seen as a benefit to our customers. As a text-based file
format, it is amenable to storage and manipulation by
source control systems. As an XML-based format, it can be
understood and edited by humans and computers alike.

Using graphical statechart editing helps engage spatial
reasoning, making interaction logic editing more accessible
to visual artists. At the same time it prevents them from
making many mistakes or typos that would produce an
invalid state machine.

The graphical depiction of interaction logic provides an
effective way to communicate with managers and other
stakeholders about the high-level flow of an application.
Because edits to this logic are immediately available in the
application—instead of transcribing logic from a diagram
into code—we have substantially reduced the time needed
to test proposed changes and fix bugs.

We found that certain aspects of the SCXML format are
harder to represent graphically, but these are rarely
necessary in our experience.

We found that large portions of the SCXML standard are
not necessary for it to be useful to our customers and us. At
the same time, we have found the standard lacking certain
features that we believe are either necessary or extremely
beneficial to add.

Implementing SCXML support in C++ with a frame-based
update engine enabled us to create a small, maintainable
codebase that integrates well with our existing update-
based interface system.

Using dynamic SCXML interpretation during application
evaluation—instead of compiling the state machine to
executable code and running that—enables us to provide
debugging introspection about the current state(s) during
development. This also reduces development time, enabling
more, faster iterations on the application.

ACKNOWLEDGMENTS
We thank the entire UI Composer development team.
Without their hard work and attention to detail our
endeavors would not have been possible.

REFERENCES
1. Harel, D. Statecharts: A Visual Formalism for Complex

Systems. Science of Computer Programming, 8(3):231–
274, 1987.

2. Introduction to Hierarchical State Machines.
http://www.barrgroup.com/Embedded-Systems/How-
To/Introduction-Hierarchical-State-Machines

3. State Chart XML (SCXML): State Machine Notation
for Control Abstraction. http://www.w3.org/TR/scxml/

4. Xie, S., Kraemer, E., Stirewalt, R. E. K., Fleming, S. D.,
Huang, Y., and Dillon, L. K. On the benefits of UML
2.0 state diagrams on student comprehension of multi-
threaded programs.
http://cobweb.cs.uga.edu/~eileen/SE_Concurrency/state
2/icse09Draft.pdf

5. Baker, P., Loh, S., and Weil, F. Model-Driven
Engineering in a Large Industrial Context — Motorola
Case Study. Model Driven Engineering Languages and
Systems, 8th International Conference, MoDELS 2005,
2005.

6. Torchiano, M., Ricca, F., and Tonella, P. "A
comparative study on the re-documentation of existing
software: Code annotations vs. drawing editors," in
International Symposium on Empirical Software
Engineering, 2005.

7. Cooper, A. The Inmates Are Running the Asylum.
Sams (1999), 168-170.

8. UML State Machine Diagrams. http://www.uml-
diagrams.org/state-machine-diagrams.html#fork-
pseudostate

9. Kistner, G. The Ruby XML StateChart Machine.
https://github.com/Phrogz/RXSC

10. Kistner, G. The Lua XML StateChart Interpreter.
https://github.com/Phrogz/LXSC

11. NVIDIA SHIELD. http://shield.nvidia.com
12. Mobile SVG Profiles: SVG Tiny and SVG Basic.

http://www.w3.org/TR/2003/REC-SVGMobile-
20030114/

